INSTALLATION, OPERATION, AND MAINTENANCE MANUAL
WELKER ECOSYSTEM™ PULSE BYPASS SYSTEM
WITH XLT CONTROLLER

DRAWING NUMBERS
OE153VS
OE180VS.1
OE181VS
OE181VS.3E
OE183VS.1E
OE190VS
OE220VS.1E

MANUAL NUMBER
IOM-181

REVISION
Rev. C, 06/25/2019
TABLE OF CONTENTS

SAFETY 3

1. PRODUCT INFORMATION 4
 1.1 Introduction 4
 1.2 Product Description 4
 1.3 Safety Warning 4
 1.4 Specifications 5
 1.5 Equipment Diagrams 6

2. INSTALLATION & OPERATION 16
 2.1 Before You Begin 16
 2.2 Installation 16
 2.3 Start-Up Procedures 18

3. XLT TOUCH SCREEN CONTROLLER 20
 3.1 Understanding the Display 20
 3.2 Navigating the Monitor Screens 21
 3.3 Navigating the Setup Screens 28

4. MAINTENANCE 46
 4.1 Before You Begin 46
 4.2 Maintenance 46

APPENDICES 47
 A: Referenced or Attached Documents 47
 B: Maintenance Schedule 48

Copyright © 2019 Welker, Inc. All rights reserved. Welker®, W Welker®, W logo, WelkerScope®, Welker Jet®, and OdorEyes® are registered trademarks of Welker, Inc.
SAFETY

IMPORTANT SAFETY INFORMATION
READ ALL INSTRUCTIONS

Notes emphasize information and/or provide additional information to assist the user.

Caution messages appear before procedures that could result in damage to equipment if not observed.

Warning messages appear before procedures that could result in personal injury if not observed.

This manual is intended to be used as a basic installation and operation guide for the Welker OdorEyes ECOsystem™ Pulse Bypass System With XLt Controller. For comprehensive instructions, please refer to the IOM Manuals for each individual component. A list of relevant component IOM Manuals is provided in Appendix A of this manual.

The information in this manual has been carefully checked for accuracy and is intended to be used as a guide for the installation, operation, and maintenance of the Welker OdorEyes equipment described in this manual. Correct installation and operation, however, are the responsibility of the end user. Welker reserves the right to make changes to this manual and all products in order to improve performance and reliability.

BEFORE YOU BEGIN

Read these instructions completely and carefully.

IMPORTANT – Save these instructions for local inspector’s use.

IMPORTANT – Observe all governing codes and ordinances.

Note to Installer – Leave these instructions with the end user.

Note to End User – Keep these instructions for future reference.

Installation of this ECOsystem™ Pulse Bypass System is of a mechanical and electrical nature.

Proper installation is the responsibility of the installer. Product failure due to improper installation is not covered under the warranty.

If you received a damaged ECOsystem™ Pulse Bypass System, please contact a Welker representative immediately.

Phone: 281.491.2331
Address: 13839 West Bellfort Street
Sugar Land, TX 77498
SECTION 1: PRODUCT INFORMATION

1.1 Introduction

We appreciate your business and your choice of Welker products. The installation, operation, and maintenance liability for this equipment becomes that of the purchaser at the time of receipt. Reading the applicable Installation, Operation, and Maintenance (IOM) Manuals prior to installation and operation of this equipment is required for a full understanding of its application and performance prior to use.*

If you have any questions, please call Welker at 1-281-491-2331.

*The following procedures have been written for use with standard Welker OdorEyes parts and equipment. Assemblies that have been modified may have additional requirements and specifications that are not listed in this manual.

1.2 Product Description

The Welker OdorEyes ECOsystem™ Pulse Bypass System With XLt Controller is designed to infuse the customer pipeline proportional to flow with natural gas that has been supersaturated with vaporized odorant. This skid-mounted automatic bypass system has three (3) primary components: the touch screen controller, the valve section, and the odorant supply tank. Each primary component plays an integral role in the operation of the ECOsystem™ and can be customized to better suit each application.

The touch screen controller serves as the system’s brain. It continuously receives feedback from the customer’s gas flow meter and the flow switch in the valve section, allowing the system to respond to changing flow conditions. As pipeline conditions change, the controller increases or decreases the injection rate so that the ECOsystem™ continues infusing proportional to flow. On-site and remote troubleshooting and monitoring are made easier by time- and date-stamped audit data detailing system performance, alarm history, and odorant tank level. An optional solar panel generates renewable energy to power the system when an electrical source is unavailable.

The valve section contains one (1), two (2), or three (3) solenoids, which control the flow of gas through the odorant supply tank and into the pipeline. Having two (2) or three (3) solenoids allows the ECOsystem™ to better respond to and accommodate varying flow rates and limits interruption to operation in the event of solenoid maintenance. To prolong the operational life of the regulator and solenoid(s), the Welker F-5 Filter Dryer conditions the natural gas supply. The flow switch communicates the solenoid operation to the controller to ensure proper odorization. For pulse bypass systems used in cold climates, a heater with thermostat can be added to replenish heat lost during regulation.

Each odorant supply tank is equipped with a tank fill inlet, vent port, blanket pressure inlet, level gauge, and outlet to the pipeline. The temperature transmitter communicates odorant temperature to the controller so the system can compensate for temperature changes within the odorant tank. For added automation, an electronic level transmitter can be installed to communicate tank level to the controller. Regardless of volume or orientation, the odorant supply tank comes with 110% containment that is sloped to the drain for easy draining.

Welker may custom design the ECOsystem™ Pulse Bypass System With XLt Controller to suit the particular application and specifications of each customer.

1.3 Safety Warning

Wherever hazardous gases or vapor-producing liquids are used, transported, or stored, the potential for an accidental leak exists. Continuous monitoring of these hazards is essential to ensure personnel safety.
1.4 Specifications

The specifications listed in this section are generalized for this equipment. Welker can modify the equipment according to your company’s needs. Please note that the specifications may vary depending on the customization of your equipment.

Table 1: ECOSystem™ Specifications

<table>
<thead>
<tr>
<th>Application</th>
<th>Vaporized Odorant Infusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Connection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC 120 V</td>
</tr>
<tr>
<td></td>
<td>DC 12 V</td>
</tr>
<tr>
<td></td>
<td>DC 24 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Odorant Tank Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>5 US Gallons (18 L)</td>
</tr>
<tr>
<td>20 US Gallons (75 L)</td>
</tr>
<tr>
<td>50 US Gallons (189 L)</td>
</tr>
<tr>
<td>60 US Gallons (227 L)</td>
</tr>
<tr>
<td>100 US Gallons (378 L)</td>
</tr>
<tr>
<td>120 US Gallons (454 L)</td>
</tr>
<tr>
<td>250 US Gallons (946 L)</td>
</tr>
<tr>
<td>500 US Gallons (1892 L)</td>
</tr>
<tr>
<td>Others Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Odorant Tank Level Gauge</td>
</tr>
<tr>
<td>Skid With 110% Containment</td>
</tr>
<tr>
<td>Temperature Transmitter</td>
</tr>
<tr>
<td>Touch Screen Controller</td>
</tr>
<tr>
<td>Valve Section (See Table 2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Flag Tracker Level Indicator</td>
</tr>
<tr>
<td>Heater for Controller Enclosure</td>
</tr>
<tr>
<td>NEMA 4 or NEMA 7 Enclosure for Controller</td>
</tr>
<tr>
<td>Solar Panel</td>
</tr>
<tr>
<td>Steel Building</td>
</tr>
</tbody>
</table>

Table 2: Valve Section Specifications

<table>
<thead>
<tr>
<th>Tubing Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Low Flow: ¼” (0.6 cm)</td>
</tr>
<tr>
<td>High Flow: ⅜” (0.9 cm)</td>
</tr>
<tr>
<td>Variable Flow: ¼” and ⅜” (0.6 and 0.9 cm)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>2-Way Solenoid Valve</td>
</tr>
<tr>
<td>Flow Switch</td>
</tr>
<tr>
<td>Regulator for Natural Gas Supply</td>
</tr>
<tr>
<td>Welker F-5 Filter Dryer for Natural Gas Supply</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Backup Solenoid Enclosure</td>
</tr>
<tr>
<td>Heater With Thermostat</td>
</tr>
<tr>
<td>Low Flow Solenoid Volume Bottle (for Systems With ⅜” (0.9 cm) Tubing)</td>
</tr>
</tbody>
</table>
1.5 Equipment Diagrams

Figure 1: General Arrangement – Horizontal Odorant Tank

![Diagram of horizontal odorant tank with numbered parts and descriptions.]

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Controller Cabinet</td>
</tr>
<tr>
<td>2</td>
<td>Odorant Supply Tank</td>
</tr>
<tr>
<td>3</td>
<td>Valve Section Panel</td>
</tr>
<tr>
<td>4</td>
<td>Control Valve</td>
</tr>
<tr>
<td>5</td>
<td>Blanket Pressure Relief Valve</td>
</tr>
<tr>
<td>6</td>
<td>Blanket Pressure Relief Valve</td>
</tr>
<tr>
<td>7</td>
<td>Temperature Transmitter</td>
</tr>
<tr>
<td>8</td>
<td>Welch F Flow Diver</td>
</tr>
<tr>
<td>9</td>
<td>Odorant Tank Fill Valve</td>
</tr>
<tr>
<td>10</td>
<td>Vent Valve</td>
</tr>
<tr>
<td>11</td>
<td>Blanket Pressure Relief Valve</td>
</tr>
<tr>
<td>12</td>
<td>Blanket Pressure Relief Valve</td>
</tr>
<tr>
<td>13</td>
<td>Controller Cabinet</td>
</tr>
<tr>
<td>14</td>
<td>Odorant Supply Tank</td>
</tr>
<tr>
<td>15</td>
<td>Valve Section Panel</td>
</tr>
<tr>
<td>16</td>
<td>Control Valve</td>
</tr>
<tr>
<td>17</td>
<td>Blanket Pressure Relief Valve</td>
</tr>
<tr>
<td>18</td>
<td>Blanket Pressure Relief Valve</td>
</tr>
</tbody>
</table>
Figure 2: General Arrangement – Vertical Odorant Tank

No.	Description
1 | Magnetostriuctive Level Indicator
2 | Valve Section Panel
3 | Controller Cabinet
4 | Temperature Transmitter
5 | Skid With 100% Containment
6 | Walker F-5 Filter Dryer
7 | Odorant Supply Tank
H | Odorant Tank Fill Valve
1 | Vent Valve
J1 | Blanket Pressure Inlet Valve
J2 | Blanket Pressure Inlet Valve
K1 | Odorized Gas Outlet Valve
K2 | Odorized Gas Outlet Valve
Figure 3: Valve Section – Single Solenoid, \(\frac{3}{8} \)" Tubing

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pressure Regulator, Natural Gas Supply</td>
</tr>
<tr>
<td>2</td>
<td>Blanket Pressure Outlet Check Valve</td>
</tr>
<tr>
<td>3</td>
<td>Flow Switch</td>
</tr>
<tr>
<td>4</td>
<td>2-Way Solenoid Valve</td>
</tr>
<tr>
<td>5</td>
<td>Pressure Gauge, Natural Gas Supply</td>
</tr>
<tr>
<td>6</td>
<td>Relief Valve</td>
</tr>
<tr>
<td>A</td>
<td>Blanket Pressure Outlet Valve</td>
</tr>
<tr>
<td>B1</td>
<td>Emergency Bypass Valve #1</td>
</tr>
<tr>
<td>B2</td>
<td>Emergency Bypass Valve #2</td>
</tr>
</tbody>
</table>
Figure 4: Valve Section – Dual Solenoid, ³/₈” Tubing

- Natural Gas Connection to Volume Bottle
- Natural Gas Supply Inlet From Pneumatic Filter
- Blanket Pressure Outlet to Odorant Tank
- Electrical Connection to Controller

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pressure Regulator, Natural Gas Supply</td>
</tr>
<tr>
<td>2</td>
<td>Blanket Pressure-Outlet Check Valve</td>
</tr>
<tr>
<td>3</td>
<td>Flow Switch</td>
</tr>
<tr>
<td>4</td>
<td>2-Way Solenoid Valve, Primary</td>
</tr>
<tr>
<td>5</td>
<td>2-Way Solenoid Valve, Backup</td>
</tr>
<tr>
<td>6</td>
<td>Pressure Gauge, Natural Gas Supply</td>
</tr>
<tr>
<td>7</td>
<td>Relief Valve</td>
</tr>
<tr>
<td>A</td>
<td>Blanket Pressure Outlet Valve</td>
</tr>
<tr>
<td>B1</td>
<td>Emergency Bypass Valve #1</td>
</tr>
<tr>
<td>B2</td>
<td>Emergency Bypass Valve #2</td>
</tr>
</tbody>
</table>
Figure 5: Valve Section – Dual Solenoid With Heater, $\frac{3}{8}$" Tubing

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pressure Regulator, Natural Gas Supply</td>
</tr>
<tr>
<td>2</td>
<td>Blanket Pressure Outlet Check Valve</td>
</tr>
<tr>
<td>3</td>
<td>Flow Switch</td>
</tr>
<tr>
<td>4</td>
<td>2-Way Solenoid Valve, Primary</td>
</tr>
<tr>
<td>5</td>
<td>Thermostat</td>
</tr>
<tr>
<td>6</td>
<td>Heater</td>
</tr>
<tr>
<td>7</td>
<td>2-Way Solenoid Valve, Backup</td>
</tr>
<tr>
<td>8</td>
<td>Pressure Gauge, Natural Gas Supply</td>
</tr>
<tr>
<td>9</td>
<td>Relief Valve</td>
</tr>
<tr>
<td>A</td>
<td>Blanket Pressure Outlet Valve</td>
</tr>
<tr>
<td>B1</td>
<td>Emergency Bypass Valve #1</td>
</tr>
<tr>
<td>B2</td>
<td>Emergency Bypass Valve #2</td>
</tr>
</tbody>
</table>
Figure 6: Valve Section – Single Solenoid, ¼" Tubing

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pressure Regulator, Natural Gas Supply</td>
</tr>
<tr>
<td>2</td>
<td>Blanket Pressure Outlet Check Valve</td>
</tr>
<tr>
<td>3</td>
<td>Flow Switch</td>
</tr>
<tr>
<td>4</td>
<td>2 Way Solenoid Valve</td>
</tr>
<tr>
<td>5</td>
<td>Relief Valve</td>
</tr>
<tr>
<td>6</td>
<td>Pressure Gauge, Natural Gas Supply</td>
</tr>
<tr>
<td>A</td>
<td>Blanket Pressure Outlet Valve</td>
</tr>
<tr>
<td>B1</td>
<td>Emergency Bypass Valve #1</td>
</tr>
<tr>
<td>B2</td>
<td>Emergency Bypass Valve #2</td>
</tr>
</tbody>
</table>

Components:
- Natural Gas Supply Inlet From Pneumatic Filter
- Electrical Connection to Controller
- Blanket Pressure Outlet to Odorant Tank
Figure 7: Valve Section – Dual Solenoid, ¼" Tubing

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pressure Regulator, Natural Gas Supply</td>
</tr>
<tr>
<td>2</td>
<td>Blanket Pressure Outlet Check Valve</td>
</tr>
<tr>
<td>3</td>
<td>Flow Switch</td>
</tr>
<tr>
<td>4</td>
<td>2-Way Solenoid Valve, Primary</td>
</tr>
<tr>
<td>5</td>
<td>2-Way Solenoid Valve, Backup</td>
</tr>
<tr>
<td>6</td>
<td>Relief Valve</td>
</tr>
<tr>
<td>7</td>
<td>Pressure Gauge, Natural Gas Supply</td>
</tr>
<tr>
<td>A</td>
<td>Blanket Pressure Outlet Valve</td>
</tr>
<tr>
<td>B1</td>
<td>Emergency Bypass Valve #1</td>
</tr>
<tr>
<td>B2</td>
<td>Emergency Bypass Valve #2</td>
</tr>
</tbody>
</table>
Figure 8: Valve Section – Dual Solenoid With Heater, ¼" Tubing

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pressure Regulator, Natural Gas Supply</td>
</tr>
<tr>
<td>2</td>
<td>Blanket Pressure Outlet Check Valve</td>
</tr>
<tr>
<td>3</td>
<td>Flow Switch</td>
</tr>
<tr>
<td>4</td>
<td>2-Way Solenoid Valve, Primary</td>
</tr>
<tr>
<td>5</td>
<td>Thermostat</td>
</tr>
<tr>
<td>6</td>
<td>Heater</td>
</tr>
<tr>
<td>7</td>
<td>2-Way Solenoid Valve, Backup</td>
</tr>
<tr>
<td>8</td>
<td>Pressure Gauge, Natural Gas Supply</td>
</tr>
<tr>
<td>9</td>
<td>Relief Valve</td>
</tr>
<tr>
<td>A</td>
<td>Blanket Pressure Outlet Valve</td>
</tr>
<tr>
<td>B1</td>
<td>Emergency Bypass Valve #1</td>
</tr>
<tr>
<td>B2</td>
<td>Emergency Bypass Valve #2</td>
</tr>
<tr>
<td>C</td>
<td>Regulator Outlet Valve</td>
</tr>
</tbody>
</table>
Figure 9: Valve Section – Triple Solenoid With Heater, ¼" and ⅜" Tubing

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pressure Regulator, Natural Gas Supply</td>
</tr>
<tr>
<td>2</td>
<td>Blanket Pressure/Outlet Check Valve</td>
</tr>
<tr>
<td>3</td>
<td>2-Way Solenoid Valve, Low Flow</td>
</tr>
<tr>
<td>4</td>
<td>Flow Switch</td>
</tr>
<tr>
<td>5</td>
<td>2-Way Solenoid Valve, High Flow</td>
</tr>
<tr>
<td>6</td>
<td>Thermostat</td>
</tr>
<tr>
<td>7</td>
<td>Heater</td>
</tr>
<tr>
<td>8</td>
<td>2-Way Solenoid Valve, Backup</td>
</tr>
<tr>
<td>9</td>
<td>Pressure Gauge, Natural Gas Supply</td>
</tr>
<tr>
<td>10</td>
<td>Relief Valve</td>
</tr>
<tr>
<td>A</td>
<td>Blanket Pressure/Outlet Valve</td>
</tr>
<tr>
<td>B1</td>
<td>Emergency Bypass Valve #1</td>
</tr>
<tr>
<td>B2</td>
<td>Emergency Bypass Valve #2</td>
</tr>
<tr>
<td>C</td>
<td>Regulator Outlet Valve</td>
</tr>
</tbody>
</table>
Figure 10: Pneumatic Filter

- Natural Gas Supply Inlet
- Natural Gas Supply Outlet to Valve Section
- Natural Gas Supply Inlet

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Welker F-5 Filter Dryer</td>
</tr>
<tr>
<td>E</td>
<td>F-5 Inlet Valve</td>
</tr>
<tr>
<td>F</td>
<td>F-5 Outlet Valve</td>
</tr>
<tr>
<td>G</td>
<td>F-5 Drain Valve</td>
</tr>
</tbody>
</table>

Figure 11: Volume Bottle Diagram (Applicable for Valve Sections With 3/8” Tubing)

- Natural Gas Connection to Valve Section

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Volume Bottle</td>
</tr>
<tr>
<td>D</td>
<td>Volume Bottle Valve</td>
</tr>
</tbody>
</table>
SECTION 2: INSTALLATION & OPERATION

2.1 Before You Begin

- After unpacking the unit, check the equipment for compliance and any damage that may have occurred during shipment. Immediately contact a Welker representative if you received damaged equipment.

- When sealing fittings with PTFE tape, refer to the proper sealing instructions for the brand used.

- The ECOsystem™ will ship skid-mounted and “hard-tube” connected with manufacturer-supplied fittings and hardware. However, the customer will need to supply some tubing and fittings in order to complete the installation of the system.

- The ECOsystem™ must be installed in a section of the natural gas pipeline with a regulated pressure drop, such as a regulator station or gate station.

- All electrical connections must meet local and national electric codes, and excessive weight added to the conduit run must be supported.

2.2 Installation

System Skid

1. Mount the skid to a flat, level surface, such as a concrete slab.
2. Connect a grounding wire to each grounding lug on the skid to safely ground the system.
3. Connect the skid drain port(s) to an appropriate draining location.

System Connections

4. Using appropriately sized customer-supplied tubing, connect from the outlet of the pipeline upstream of the regulated pressure drop to the inlet of the Welker F-5 Filter Dryer (*Figure 10*).

 - Tubing must have a minimum diameter of $\frac{3}{8}$".

5. Connect from odorized gas outlet valve K2 to an unused valve on the natural gas pipeline downstream of the regulated pressure drop (*Figure 1 or Figure 2*).

 - Welker recommends using stainless steel tubing for all natural gas process lines, as plastic tubing can absorb odorant from the gas.

6. Ensure that all valves on the system are closed.
7. Ensure that all fittings, connections, and bolts are tightened.
Electrical Connections

8. Connect an appropriate electrical supply to the controller. Refer to industry standards for appropriate electrical connections to interface with the PLC.

- **Stop**
 Turn OFF the electrical supply prior to making electrical connections.

- **Stop**
 For systems used in hazardous locations, sealing compound is required to seal all fittings to restrict the passage of gases, vapors, or flames.

9. Connect the customer gas flow signal device to the termination block.

- **Note**
 The controller can accept analog or pulse input.

10. If the ECOSystem™ is not equipped with the optional flag tracker level indicator, installation is now complete; proceed to Section 2.3, Start-Up Procedures. If the ECOSystem™ is equipped with the optional flag tracker level indicator, continue to step 11.

Flag Tracker Level Indicator (Optional)

- **Warning**
 The float and gasket must be installed to the flag tracker level indicator prior to filling the odorant supply tank.

- **Note**
 The float and gasket are packaged separately for shipment.

11. Remove the bottom drain flange from the base of the level indicator.
12. Install the float to the spring on the bottom drain flange. The top of the float should point up.

- **Note**
 The top of the float is marked to ensure proper orientation.

- **Note**
 The spring attached to the bottom drain flange cushions the float when the odorant supply tank is empty.

13. Replace the shipping gasket with the provided gasket.
14. Install the bottom drain flange with float to the level indicator.
2.3 Start-Up Procedures

Odorant Supply Tank

1. Open emergency bypass valves B1 and B2 (*Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, or Figure 9*).
2. Fill the odorant supply tank in accordance with company policy and procedure, taking care not to exceed 80% of the total volume of the supply tank.

 Never fill the odorant supply tank above 80% of its capacity. Allow at least 20% for product expansion, should the tank be exposed to increased temperatures.

3. Check the odorant supply tank for leaks and repair as necessary.
4. Close emergency bypass valves B1 and B2 (*Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, or Figure 9*).

Natural Gas Supply Regulator

5. As necessary, open any valves between the outlet on the natural gas pipeline and the F-5 inlet.
6. Open F-5 inlet valve E and F-5 outlet valve F (*Figure 10*).
7. Apply natural gas to the valve section to pressurize the natural gas supply regulator (*Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, or Figure 9*).

 The pneumatic supply regulator comes factory-set to the setting required to operate the solenoid(s).

8. If applicable, open regulator outlet valve C (*Figure 8 or Figure 9*).
9. If applicable, open volume bottle valve D (*Figure 11*). The volume bottle will fill with the conditioned natural gas.

 Only systems with 1/4" tubing are equipped with a volume bottle.

Valve Configuration

10. Slowly open the valves indicated in Table 3.

<table>
<thead>
<tr>
<th>Valve Letter</th>
<th>Valve Description</th>
<th>Reference Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Blanket Pressure Outlet</td>
<td>3–9</td>
</tr>
<tr>
<td>J1 & J2</td>
<td>Blanket Pressure Inlet</td>
<td>1 & 2</td>
</tr>
<tr>
<td>K1 & K2</td>
<td>Odorized Gas Outlet</td>
<td>1 & 2</td>
</tr>
</tbody>
</table>

 Once odorized gas outlet valves K1 and K2 are open, gas may free flow from the odorant supply tank to the pipeline until pressure in the system equalizes. Note that free flow will last only for a short time and over-odorization will not occur.

11. If applicable, slowly open any valves between the odorized gas outlet on the odorant supply tank and the pipeline.
12. Check for leaks and repair as necessary.
Controller Configuration

13. Verify that the customer set points have been correctly set by the manufacturer.

Verifying Solenoid and Flow Switch Operation

14. From the controller, verify the correct operation of the solenoid and flow switch. From the Main Menu, select Setup Odorizer (Figure 23). From the Setup Odorizer menu, select View I/O (Figure 41).
15. As the controller opens the solenoid, verify that FlowSw and Sol 1 darken simultaneously.
16. As the controller closes the solenoid, verify that FlowSw and Sol 1 clear simultaneously.
17. Once the correct operation of the solenoid and flow switch has been confirmed, the ECOsystem™ is operational.
3.1 Understanding the Display

The touch screen controller is used to modify system parameters and view current system information and current alarm status.

The touch screen controller is a menu-driven system. The Home screen is the top screen in the menu tree (Figure 12).

Figure 12: Controller Menu Tree

- **Main Menu**
 - Monitor odorizer
 - Setup odorizer
 - Current alarms
 - View audit trail
 - View alarms log
 - Date and time
 - Controller version
 - MicroSD card access

 This screen is at the top of the menu tree. All of the controller screens are accessed through this screen.

- **Monitor Odorizer**
 - System status
 - Solenoid stats
 - Odorant tank level

 Access monitor submenus to view current information about the operation of the odorizer.

- **Setup Odorizer**
 - Controller setup
 - Odorant tank setup
 - Gas flow signal
 - Fixed rate setup
 - Auto scroll setup
 - MODBUS setup
 - Local audit trail
 - Local alarms log
 - SD card logging
 - View I/O

 Access setup submenus to change set point values in the odorizer.

- **Current Alarms**
 - Analog gas flow
 - Constant rate mode

 View active alarms. Inactive alarms will not be displayed.

- **View Alarms Log**
 - Alarms record: 52
 - Alarm code 111
 - 05:34:23
 - Power restored

 View the alarms log, which is stored in the system's internal memory.

- **Date and Time**
 - (24 hour format) 14:22:43
 - Current date: Monday 01/01/2007

 View the current date and time in the odorizer. Both values can be changed from this screen.

- **Audit record**
 - 03/07/2006 14:00
 - Total pounds: 23.459
 - Total MMCF: 31.2798
 - Lbs/MMCF: 0.75
 - Gal remaining: 434

 View the audit trail, which is stored in the system's internal memory.

- **Controller Version**
 - ECOsystem B/U
 - 14:22:43 Version 01/01/07 1.73 XLT

 View the version of software the controller is currently running.

 The current date and time in the odorizer are also displayed here.

- **MicroSD Card Access**

 If a microSD card is installed to the system, its contents can be viewed from this screen.
Navigating the Display

Figure 13: Navigation Keys

- **Up Arrow**: Press to scroll up on the screen. The fields will highlight during scrolling.
- **Down Arrow**: Press to scroll down on the screen. The fields will highlight during scrolling.
- **Enter**: Press to select the highlighted field.
- **Escape**: Press to return to the previous screen.

3.2 Navigating the Monitor Screens

Through the monitor screens, the user can access the System Status, Solenoid Stats, Odorant Tank Level, Current Alarms, Audit Trail, Alarms Log, Controller Version, and MicroSD Card to view current information for the odorizer.

Monitor screens are informational screens: no values can be changed from these screens.

Figure 14: Monitor Odorizer Submenus

- **System Status**: Screen displays an overview of system performance.
- **Solenoid Stats**: Screen displays the current solenoid statistics.
- **Odorant Tank Level**: Screen displays the current level and temperature of odorant in the tank.

Monitor Odorizer
Access monitor submenus to view current information about the operation of the odorizer.
System Status

The System Status submenus provide the user with an overview of system performance.

Figure 15: System Status Submenu

If the system status totals are used to track system performance, they should be periodically reset through the Controller Setup submenu (Figure 24). As the total values increase, they will begin to lose accuracy and will eventually stop accumulating.
Solenoid Stats

Figure 16: Solenoid Stats Submenu

<table>
<thead>
<tr>
<th>Solenoid Stats</th>
<th>Screen displays the current solenoid statistics.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dwell (Sec)</td>
<td>0.2</td>
</tr>
<tr>
<td>Cycle (Sec)</td>
<td>8.1</td>
</tr>
<tr>
<td>Pulses/Hr</td>
<td>444.444</td>
</tr>
<tr>
<td>Pulses</td>
<td>9482145</td>
</tr>
<tr>
<td>Lbs/Pulse</td>
<td>0.004228</td>
</tr>
<tr>
<td>Control Solenoid</td>
<td>Normal Flow</td>
</tr>
</tbody>
</table>

Dwell (sec)
The dwell time is the length of time (in seconds) the solenoid remains open each time it opens.

Cycle (sec)
The cycle time is how frequently (in seconds) the solenoid is opening.

Pulses/Hr
Pulses per hour is the number of times the solenoid will open per hour given the current dwell and cycle times.

Pulses
The total number of times the solenoid has pulsed odorant into the pipeline.

Lbs/Pulse
Pounds per pulse is the volume of odorant pulsed into the pipeline every time the solenoid opens.

Control Solenoid
This indicates which solenoid is currently operating.

Odorant Tank Level

Figure 17: Odorant Tank Level Submenu

<table>
<thead>
<tr>
<th>Monitor Odorizer</th>
<th>Odorant Tank Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Status</td>
<td></td>
</tr>
<tr>
<td>Solenoid Stats</td>
<td></td>
</tr>
<tr>
<td>Odorant Tank Level</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Odorant Tank Level</th>
<th>Screen displays the amount of odorant remaining in the odorant supply tank in inches, US gallons, and pounds, as well as the temperature of the odorant in degrees Fahrenheit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inches</td>
<td>18.0</td>
</tr>
<tr>
<td>Gallons</td>
<td>14.4</td>
</tr>
<tr>
<td>Pounds</td>
<td>97.6</td>
</tr>
<tr>
<td>Temperature (F)</td>
<td>64</td>
</tr>
</tbody>
</table>

These values will either be from a transmitter or manually entered.
Viewing the Current Alarms

Figure 18: Current Alarms Screen

![Image of current alarms screen]

Table 4: Current Alarms

<table>
<thead>
<tr>
<th>Alarm Type</th>
<th>Conditions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Gas Flow</td>
<td>Can only be active if Analog mode is selected.</td>
<td>The controller will go into the selected fail mode when this alarm is active.</td>
</tr>
<tr>
<td></td>
<td>NOTE: If this alarm is active, verify that a 4–20 mA signal is being received from the flow meter.</td>
<td></td>
</tr>
<tr>
<td>Pulse Gas Flow</td>
<td>Can only be active if Pulse mode is selected.</td>
<td>The controller will go into the selected fail mode when this alarm is active.</td>
</tr>
<tr>
<td></td>
<td>NOTE: If this alarm is active, the pulse input cutoff time has expired. Verify that a pulse input is being received from the flow meter. If this alarm is active when the controller is receiving pulse input from the flow meter, Welker recommends increasing the pulse input cutoff time to prevent the alarm from becoming active prematurely.</td>
<td></td>
</tr>
<tr>
<td>Constant Rate Mode</td>
<td>Can only be active if Constant Rate Mode is specified as the desired fail mode.</td>
<td>The controller will enter this gas flow fail mode when there is a gas flow signal loss.</td>
</tr>
<tr>
<td>Shutdown Mode</td>
<td>Can only be active if Shutdown Mode is specified as the desired fail mode.</td>
<td>The controller will enter this gas flow fail mode when there is a gas flow signal loss.</td>
</tr>
<tr>
<td>Fixed Mode</td>
<td>Can only be active if Fixed Mode is enabled and the Fixed Alarm Rate is set.</td>
<td>NOTE: If this alarm is active, the Fixed Alarm Rate will be the assumed gas flow in the system and will override any other input parameters. The Fixed Rate Alarm will not clear until Fixed Mode is disabled.</td>
</tr>
<tr>
<td>Analog Temperature</td>
<td>Can only be active if Transmitter is set as the RTD setup method.</td>
<td>NOTE: If this alarm is active, verify that a 4–20 mA signal is being received from the temperature transmitter. If this alarm is active, the system will use the manually entered temperature; therefore, Welker recommends regularly updating the manual temperature value.</td>
</tr>
<tr>
<td>Analog Tank Level</td>
<td>Can only be active if an electronic level transmitter is used to track the odorant tank level and the controller loses the 4–20 mA signal from the transmitter.</td>
<td>NOTE: If this alarm is active, the controller will automatically switch to the odorant flow method to track the odorant tank level. The controller will use the value of odorant in the tank and subtract the appropriate volume each time the solenoid opens.</td>
</tr>
<tr>
<td>Tank Low Level</td>
<td>Active if the odorant tank level has dropped below the specified value.</td>
<td>NOTE: This alarm will clear once the tank is filled with odorant or the alarm set point is lowered.</td>
</tr>
<tr>
<td>Odorant Overflow</td>
<td>Active if the flow switch signals the controller indicating gas is passing through it even though the solenoid(s) should not be open.</td>
<td>NOTE: If this alarm is active, it could be an indication that a solenoid is stuck open and that the system is over-odorizing or that the flow switch is stuck open.</td>
</tr>
<tr>
<td>Odorant No Flow</td>
<td>Active if the controller signals the solenoid to open but does not receive a signal from the flow switch confirming the solenoid has opened.</td>
<td>NOTE: If this alarm is active, it could be an indication that the solenoid has failed closed or that the pressure differential across the system is not great enough to odorize.</td>
</tr>
</tbody>
</table>
From the View Audit Trail submenu, the user can access the audit trail records stored on internal memory. Up to 600 audit trail records can be stored and viewed.

Figure 19: View Audit Trail

Audit Record
The audit trail record number.

Tot Pounds
Total amount of odorant in pounds that was used during the user-defined time frame.

Lbs/MMcf
Total odorant usage by the system relative to gas flow (lb/MMcf) during the user-defined time frame (a.k.a. odorization rate).

Tot MMcf
Total amount of gas flow the odorizer saw during the user-defined time frame.

Gal Remaining
Total amount of odorant remaining in US gallons at the end of the user-defined time frame.

Press the up or down arrow to scroll through the audit trail records.

Up to 600 audit trail records can be stored in the system's internal memory.
View Audit Trail

From the View Alarms Log submenu, the user can access the alarms log stored on internal memory. Up to 428 alarms log records can be stored and viewed.

Figure 20: View Alarms Log

- **Alarms Record**: The alarms log record number.
- **Alarm Code**: The alarm code.
- **Date and Time**: The date the alarm occurred or cleared.
- **Power Restored**: The time the alarm occurred or cleared.
- **Press the up or down arrow to scroll through the alarms log records.**
- **Up to 428 alarms log records can be stored in the system's internal memory.**
Controller Version

Figure 21: Controller Version

- **MAIN MENU**
 - Monitor odorizer
 - Setup Odorizer
 - Current Alarms
 - View Audit Trail
 - View Alarms Log
 - Controller Version
 - Date and Time
 - MicroSD Card Access

This is the current date and time in the odorizer.

- **Version**
 - 14:22:43
 - 01/01/07
 - 1.73 XLt

This is the version of software the controller is currently running.

MicroSD Card Access

Figure 22: MicroSD Card Access

- **MAIN MENU**
 - Monitor odorizer
 - Setup Odorizer
 - Current Alarms
 - View Audit Trail
 - View Alarms Log
 - Controller Version
 - Date and Time
 - MicroSD Card Access

If a microSD card is installed to the system, its contents can be viewed from this screen.

Contact Welker for assistance installing software updates.
3.3 Navigating the Setup Screens

Through the Setup Odorizer submenu, the user can access the Controller Setup, Odorant Tank Setup, Gas Flow Signal, Fixed Rate Setup, Auto Scroll Setup, MODBUS Setup, Local Audit Trail, Local Alarms Log, and View I/O submenus and change numeric and/or text values that alter the parameters and features of the odorizer.

Changing numeric and/or text values in the Setup Odorizer submenus will alter how the system operates.

Figure 23: Setup Odorizer Submenus

- **Controller Setup**
 - Enter this submenu to configure the operation of the odorizer.

- **Odorant Tank Setup**
 - Enter this submenu to set the parameters for the odorant tank and temperature transmitters.

- **Fixed Rate Setup**
 - Enter this submenu to enable or disable the fixed rate mode.

- **Modbus Setup**
 - If the Modbus input method is used, enter this submenu to configure the Modbus input and view the current status of the Modbus.

- **Local Audit Trail**
 - Enter this submenu to:
 - set the number of hours each audit trail record will store
 - view the number of stored audit trail records and where the current record will be stored in memory
 - clear the audit trail

- **Local Alarms Log**
 - Enter this submenu to:
 - view the number of stored alarms log records and where the current record will be stored in memory
 - clear the alarms log

- **SD Card Logging**
 - Enter this submenu to enable or disable data logging to the SD card and monitor the status of the SD card.

- **View I/O**
 - Enter this submenu to view the current status of the digital inputs, digital outputs, and analog inputs in the system.
Changing Values on Setup Screens

Numeric Values
1. To change a numeric value, use the arrows to highlight the value to be changed, and then press ENTER (Figure 13). A keypad will appear on the screen.
2. Type the new numeric value using the keypad.
3. Once the new numeric value has been entered, press ENTER to save the changes.

If the new value entered is outside the range of allowable values, the value will revert back to the previous value once ENTER is pressed. The keypad will stay active, allowing another value to be entered.

Text Values
4. To change a text value, press on the value to be changed. A dropdown menu will appear on the screen.
5. Scroll through the value’s options using the arrows in the dropdown menu.
6. Highlight the desired text value, and then press ENTER to save the changes.

If a mistake is made while entering the new value or if the value does not need to be changed, press ESC to discard the changes.
Controller Setup

Through the Controller Setup submenu, the user can set the general parameters for the odorizer.

Controller Setup
Enter this submenu to configure the operation of the odorizer.

Odor Rate Required
Set the number of pounds of odorant to pulse per million standard cubic feet (MMcf) of gas passed.

Valve Section Flow
This constant, which is based on the inlet pressure and the pressure drop across the solenoid, is the volume of gas (scf/h) that will be passed into the odorant tank each time the solenoid opens.

This value is factory-set according to customer specifications and should not be changed unless instructed by Welker OdorEyes personnel.

Backup Solenoid
For systems that use a backup solenoid in series with the primary solenoid, the backup solenoid can be normally open or normally closed.

This must be set correctly so that the system will operate properly in the event of primary solenoid failure.

Dual Solenoid Setup
Enter this submenu to configure the dual solenoid setup if the system is equipped with two (2) or three (3) solenoids.

See Figure 25.

If the system status totals are used to track system performance, they should be periodically reset through the Controller Setup submenu (Figure 24). As the total values increase, they will begin to lose accuracy and will eventually stop accumulating.

Figure 24: Controller Setup Submenu

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**

Controller Setup

Odor Rate Required

- **Lbs/MMcf**: 0.750
- **Valve Section Flow**: scf/hr: 5075.4
- **Reset Totals**: No
- **Backup Solenoid**: Normally Closed
- **Flow Switch Test**: Secs Delay: 2.0
- **Alarm Limit**: 10
- **Dual Solenoid Setup**
Odorant Tank Setup

Through the Odorant Tank Setup submenus, the user can input information for the odorant tank and temperature transmitter.

Figure 25: Dual Solenoid Setup

Dual Solenoid Setup

Controller Setup
Odor Rate Required Lbs/MMCf 0.750
Valve Section Flow scf/Hr 5075.4
Reset Totals? No
Backup Solenoid Normally Closed
Flow Switch Test Secs Delay 0.0
Alarm Limit 10

Low Flow Control Solenoid
For dual solenoid systems, this should be disabled.

Low Valve Section
These values are factory-set.

Dual Solenoid Setup

Figure 26: Odorant Tank Setup Submenus

Odorant Tank Setup

Tank Level Setup
Set the parameters for how the tank level will operate.

RTD Setup
Select the method for reading the temperature of the odorant in the tank.
Tank Level Setup

Tank Level Setup

- **Tank Level Setup**
 - **Method**: Set the parameters for how the tank level will operate.

- **Tank Level Setup**
 - **Size**: This is the volume of the tank in US gallons.

- **Odorant Tank Setup**
 - **Tank Level Setup**
 - **Method**: Transmit. Size (gallons) 25 Gallons/Inch 0.80 Low Level Alarm Percent 5.0 Max Level (%) 50.0 Absorption (g) 5.00 Absorption (b) 5.00 Odorant Density Lbs/Gallon 6.78 Current Level Gallons 14.4 Adjust Level Gallons 0.0 Strapping: Enable Strapping Table P6 Strapping Table P7

- **Tank Level Setup**
 - **Low Level Alarm**: The low level alarm set point is a percent value at which the system will trigger an alarm for low odorant level in the tank.
 - **To clear this alarm, the tank can be filled with odorant or the set point can be lowered.**

- **Tank Level Setup**
 - **Odorant Density**: The odorant density will vary according to the odorant used.

 - **Odorant density should be published by the odorant manufacturer in pounds/US gallons at 60°F.**

- **Tank Level Setup**
 - **Current Level**: View the current level of the tank in US gallons.

 - **Adjust Level**: If the odorant flow rate is changed, the current tank level can be manually adjusted.

- **Tank Level Setup**
 - **Gallons/Inch**: This value is used to convert between US gallons and inches.

- **Tank Level Setup**
 - **Absorption**: The absorption set point is the rate of absorption the odorant is achieving inside the tank. This value allows the odorizer to compensate for real-world variables, such as variable gas flow and changing temperatures.

- **Tank Level Setup**
 - **Strapping**: Toggle the field to enable or disable the tank strapping table. For horizontal odorant tanks, this field should be enabled. For vertical odorant tanks, the field should be disabled.

- **Tank Level Setup**
 - **Strapping Table P1, 2**: If strapping is enabled, view the tank depth and tank volume for each strapping point.

When using an electronic level transmitter to track the odorant tank level, the Method should be set to Transmitter.

When estimating the odorant tank level based on odorant usage, the Method should be set to Odorant Flow.

The Current Level numeric value cannot be directly changed. Instead, the user must enter a value in the Adjust Level field to increase or decrease the Current Level by the specified amount.

- To decrease the Current Level, enter the volume to be subtracted from the current level as a negative number in the Adjust Level field, and then press ENTER to save the changes. The Current Level should have decreased by the amount entered, and the Adjust Level should have reverted to 0.0.

- To increase the Current Level, enter the volume to be added to the current level in the Adjust Level field, and then press ENTER to save the changes. The Current Level should have increased by the amount entered, and the Adjust Level should have reverted to 0.0.
Figure 28: Strapping Tables

<table>
<thead>
<tr>
<th>Strapping Table Pg1</th>
<th>Strapping Table Pg2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inches 1</td>
<td>2.00</td>
</tr>
<tr>
<td>Gallons 1</td>
<td>7.50</td>
</tr>
<tr>
<td>Inches 2</td>
<td>4.00</td>
</tr>
<tr>
<td>Gallons 2</td>
<td>8.25</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>Inches 10</td>
<td>20.00</td>
</tr>
<tr>
<td>Gallons 10</td>
<td>500.00</td>
</tr>
</tbody>
</table>

These rows display the tank depth in inches for ten (10) strapping points.

The strapping table page number.

Each page displays the tank depth in inches and the tank volume in US gallons for ten (10) strapping points.

<table>
<thead>
<tr>
<th>Strapping Table Pg1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inches 1</td>
</tr>
<tr>
<td>Gallons 1</td>
</tr>
<tr>
<td>Inches 2</td>
</tr>
<tr>
<td>Gallons 2</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>Inches 10</td>
</tr>
<tr>
<td>Gallons 10</td>
</tr>
</tbody>
</table>

These rows display the tank volume in US gallons for ten (10) strapping points.
When using a temperature transmitter to track the temperature in the odorant tank, the Method should be set to Transmitter. When there is no device tracking the temperature in the odorant tank, the Method should be set to Manual Entry.

Setting an accurate manual temperature is necessary, even when using a temperature transmitter. The temperature of the odorant supply tank is key to system operation; correct odorization is not possible without this value.

If the type of odorant used is changed, please contact Welker® OdorEyes® personnel for new absorption values and/or pressure regulator setting.
Gas Flow Signal

Through the Gas Flow Signal submenus, the user can set up the parameters of the odorant gas flow input signal.

Figure 31: Gas Flow Signal Submenus

- **Setup Odorizer**
 - Controller Setup
 - Odorant Tank Setup
 - Gas Flow Signal
 - Fixed Rate Setup
 - Auto Scroll Setup
 - MODBUS Setup
 - Local Audit Trail
 - Local Alarms Log
 - SD Card Logging
 - View I/O

- **Gas Flow Signal**
 - Input Signal Setup
 - Fail Mode Setup

Gas Flow Signal
Enter this submenu to set the parameters for the gas flow signal and set the fail mode.

Input Signal Setup
Select the gas flow input signal type and set up the parameters.

Fail Mode Setup
Select the desired fail mode and set up applicable parameters.
If the gas flow signal will be analog, the analog signal must be 4–20 mA powered by the user.

If the gas flow signal will be a pulse, the pulse will be a digital pulse powered by the controller.

If the pulse input method is selected, the Pulse Input Cutoff must also be set (Figure 33).
Figure 33: Gas Flow Signal – Fail Mode Setup

Fail Mode Setup
Select the desired fail mode and set up applicable parameters.

Mode
Toggle between the two (2) fail modes:
1. constant rate mode: the system will act as a timer, pulsing odorant into the pipeline at the customer-specified rate
2. shutdown mode: the system will halt odorization and will not start again until a gas flow signal is received

Set Constant Rate
This value is only active if the fail mode is set to constant rate mode.

In the event of a gas flow signal loss, the system will continue to odorize at the constant rate set here (Mcf/h).

Pulse Input Cutoff
If the pulse input method is used, this value is the amount of time (in seconds) the system will wait between pulse inputs before it will determine there is a gas flow signal loss and go into the set fail mode.

Setting the Fail Mode to Shutdown will halt odorization until the alarm is cleared.
Setting the Fail Mode to Constant Rate will allow odorization to continue at the specified rate.

If the gas flow value does not change during the Pulse Input Cutoff time, the system will alarm for loss of flow and will enter the specified Fail Mode. The alarm will clear on the next pulse input or change in Modbus gas flow, and the system will resume normal operation.
Fixed Rate Setup

Figure 34: Fixed Rate Setup

- **Fixed Rate Setup**
 - Enter this submenu to enable or disable the fixed rate mode.

- **Fixed Mode**
 - When disabled, the system will odorize proportional to flow.

 When enabled, the Fixed Alarm Rate will be the assumed gas flow in the system and will override any other input parameters. The Fixed Rate Alarm will be active on the Current Alarms screen.

- **Fixed Alarm Rate**
 - When Fixed Mode is enabled, the flow rate (Mcf/h) must be manually set. The system will odorize based on this rate until the Fixed Mode is disabled.
Auto Scroll Setup

Figure 35: Auto Scroll Setup

Auto Scroll
When Auto Scroll is enabled, the touch screen controller will automatically scroll through seven (7) pre-set screens (Figure 36).

Start Timeout
The length of touch screen inactivity (in seconds) after which Auto Scroll will begin.

Screen Switch Time
The length of time (in seconds) each pre-set screen will display when Auto Scroll is enabled.

Figure 36: Auto Scroll Pre-Set Screens
Modbus Setup

Figure 37: Modbus Setup

Modbus Setup

If the Modbus input method is used, enter this sub-menu to configure the Modbus input and view the current status of the Modbus.

Port M11
When enabled, the mode of port M11 switches to Modbus.

Parity
This value can be set to None, Odd, or Even.

Protocol
The protocol setting applies to port M11 only.

The protocol can be set to:
- CS/CAN
- Generic
- Modbus RTU
- Modbus ASCII
- Modbus TCP

Mode
The mode setting applies to port M11 only.

The mode can be set to:
- RS-232
- RS-485
- Modem
- Ethernet
- Fiber A
- Fiber B
- GSM Dual
- GSM Quad
- Radio 900 MHz
- Radio Zigbee

Com Timeout
This value is the timeout between Modbus Messages (in seconds).

These fields display the current status of the Modbus for troubleshooting purposes.
Audit Trail and Alarms Log Setup

Through the Local Audit Trail and Local Alarms Log submenus, the user can set up and reset the data logs stored locally.

Figure 38: AuditTrail and Alarms Log Setup

<table>
<thead>
<tr>
<th>Setup Odorizer</th>
<th>Setup Odorizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller Setup</td>
<td>Controller Setup</td>
</tr>
<tr>
<td>Odorant Tank Setup</td>
<td>Odorant Tank Setup</td>
</tr>
<tr>
<td>Gas Flow Signal</td>
<td>Gas Flow Signal</td>
</tr>
<tr>
<td>Fixed Rate Setup</td>
<td>Fixed Rate Setup</td>
</tr>
<tr>
<td>Auto Scroll Setup</td>
<td>Auto Scroll Setup</td>
</tr>
<tr>
<td>MODBUS Setup</td>
<td>MODBUS Setup</td>
</tr>
<tr>
<td>Local Audit Trail</td>
<td>Local Audit Trail</td>
</tr>
<tr>
<td>Local Alarms Log</td>
<td>Local Alarms Log</td>
</tr>
<tr>
<td>SD Card Logging</td>
<td>SD Card Logging</td>
</tr>
<tr>
<td>View I/O</td>
<td>View I/O</td>
</tr>
</tbody>
</table>

Local Audit Trail

Hours/Record
This value is the number of hours (from 1 to 24) of accumulated data each audit trail record will store.

The audit trail stores 600 records. If this value is set to 1, only 600 hours of information will be stored. If this value is set to 24, 600 days (i.e., 14,400 hours) of information will be stored.

Records/Alarms Stored
This value is the number of records stored since the last time the audit trail or alarms log was cleared.

Once this value reaches its maximum (600 audit trail records or 428 alarms log records), it will no longer accumulate. However, new records will overwrite the oldest records so that new records can continue to be stored.

Record
This is where the current record will be stored in memory.

The maximum number of audit trail records that can be stored is 600.

The maximum number of alarms log records that can be stored is 428.

Clear Audit/Alarms
Press to delete all records in the audit trail or alarms log and reset Records/Alarms Stored and Record to zero (0).
SD Card Logging

Setup Odorizer
- Controller Setup
- Odorant Tank Setup
- Gas Flow Signal
- Fixed Rate Setup
- Auto Scroll Setup
- MODBUS Setup
- Local Audit Trail
- Local Alarms Log
- SD Card Logging
- View I/O

SD Card Logging
- Data Logging: Enable
 - SD Card Status
 - Ready for logging
 - Percent Full: 25
 - Capacity: 32000000
 - Free Space: 1000000
 - AuditTrailFileStatus
 - Ready to log data
 - Buffer % Full: 4
 - AlarmsLogFileStatus
 - Ready to log data
 - Buffer % Full: 6

Figure 39: SD Card Logging

- **SD Card Logging**
 Set up and monitor the SD card data logs stored by the odorizer.

- **Data Logging**
 Must be enabled for the system to automatically log information to the installed SD card.

- **SD Card Status**
 Monitor the status and storage capacity of the installed SD card.
The View I/O submenu provides the user with an overview of the current status of digital inputs, digital outputs, and analog inputs in the system.

Figure 40: View I/O, 1 of 2

Gas Flow AI
This analog signal is the raw count coming into the odorizer after the signal has been converted from milliamps. This value will vary according to the output from the customer gas flow meter.

Tank Level AI
This analog signal is the raw count coming into the odorizer after the signal has been converted from milliamps. This value will vary according to customer specifications.

Tank Temp AI
This analog signal is the raw count coming into the odorizer after the signal has been converted from milliamps. This value will vary according to the output from the temperature transmitter.
Figure 41: View I/O, 2 of 2

View I/O
Enter this submenu to view the current status of the digital inputs, digital outputs, and analog inputs in the system.

This will close when the primary solenoid is open.

This will close when the backup solenoid is open.

This indicates the alarm status.
The alarm status is normally closed.

In triple solenoid systems, this will close when the low flow solenoid is open.

This will close when the flow switch receives a gas flow signal.

This will close when a gas flow pulse input is received.

This will close when a gas flow pulse input is received from a second device, if applicable.

- **Controller Setup**
- **Odorant Tank Setup**
- **Gas Flow Signal**
- **Fixed Rate Setup**
- **Auto Scroll Setup**
- **MODBUS Setup**
- **Local Audit Trail**
- **Local Alarms Log**
- **SD Card Logging**

Gas Flow AI 25322
- Tank Level AI 9931
- Tank Temp AI 16711
- FlowSw
- GasDI
- GasDI2
- Sol 1
- Sol 2
- Alarm
- Sol 3

Tank Level AI 9931
- Tank Temp AI 16711
- FlowSw
- GasDI
- GasDI2
- Sol 1
- Sol 2
- Alarm
- Sol 3

Tank Temp AI 16711
- FlowSw
- GasDI
- GasDI2
- Sol 1
- Sol 2
- Alarm
- Sol 3
Date and Time

Figure 42: Date and Time

- **Date and Time**

 View the current date and time in the odorizer. Both values can be changed from this screen.

- **Date and Time**

 This is the format of time in the odorizer.

- **Date and Time**

 Change the current weekday here.

- **Date and Time**

 Change the current time here.

 The backup battery ensures that the current date and time will not be lost.

 Note that the clock does not account for daylight saving time.

 Change the current date here.
SECTION 4: MAINTENANCE

4.1 Before You Begin

1. Refer to Appendix B, Maintenance Schedule, for the itemized Welker recommended maintenance schedule for the ECOsystem™.
2. Prior to maintenance or disassembly of the unit, it is advisable to have a repair kit available for repairs of the system in case of unexpected wear or faulty seals.

![Warning]
New seals supplied in spare parts kits should be lightly lubricated before being installed to ease the installation of the seals and reduce the risk of damage when positioning them on parts. Wipe excess lubricant from the seals, as it may adversely affect analytical instrument results.

![Note]
For sample-exposed seals, Welker recommends non-hydrocarbon-based lubricants, such as Krytox®.
For non-sample-exposed seals, Welker recommends either non-hydrocarbon-based lubricants or silicone-based lubricants, such as Molykote® 111.

![Note]
After the seals are installed, the outer diameter of shafts and inner diameter of cylinders may be lubricated to allow smooth transition of parts.

3. All maintenance and cleaning of the unit should be performed on a smooth, clean surface.

4.2 Maintenance

1. During operation, monitor the system for leaks. If leaks are present, halt operation and repair as necessary.
2. Occasionally, a system component may need to be repaired or replaced for manufacturer recommended maintenance. To perform maintenance on components:
 a. Turn OFF all electrical power to the system.
 b. Depressurize the system and close all valves.
 c. Disconnect the tubing and remove individual system components for maintenance.
 d. For complete and proper maintenance on individual system components, refer to their respective Installation, Operation, and Maintenance (IOM) Manual. A list of component Installation, Operation, and Maintenance (IOM) Manuals is available in Appendix A, Referenced or Attached Documents, in this manual.
 e. After performing necessary maintenance on system components, reconnect all instrument tubing.
 f. Reinstall the system according to the instructions in Section 2.2, Installation, and Section 2.3, Start-Up Procedures.

![Warning]
Prior to closing odorized gas outlet valves K1 and K2 and/or the pipeline isolation valve, the ECOsystem™ must be powered down. This is to prevent the odorant supply tank from building pressure.
APPENDIX A: REFERENCED OR ATTACHED DOCUMENTS

Welker Installation, Operation, and Maintenance (IOM) Manuals suggested for use with this unit:

- IOM-025: Welker IR-1, IR-2, IR-4, and IR-6 Instrument Regulators
- IOM-033: Welker RV-1, RV-2, RV-2CP, and RV-3 Relief Valves
- IOM-105: Welker NV-1 and NV-2 Instrument Valves
- IOM-169: Welker F-5 Filter Dryer

Other Installation, Operation, and Maintenance (IOM) Manuals suggested for use with this unit:

- ABB Inc. K-TEK Products AT200 Magnetostrictive Level Transmitter (Welker IOM-V011)
- ASCO, L.P. 0.55 W Low Power Solenoid Valves Low Power Series (Welker IOM-V267)
- ASCO, L.P. 1.4 W Low Power Solenoid Valves Low Power Series (Welker IOM-V266)
- ASCO, L.P. General Service Solenoid Valves Series 8314 (Welker IOM-V121)
- ASCO, L.P. High Pressure Solenoid Valves Series 8223 (Welker IOM-V103)
- CCI Thermal Technologies Inc. Cata-Dyne™ Explosion-Proof Gas Catalytic Heaters WX Series (Welker IOM-V030)
- Emerson Process Management Regulator Technologies, Inc. Fisher™ 1301 Series High-Pressure Regulators Types 1301F and 1301G (Welker IOM-V107)
- Gems Sensors Inc. Piston-Type Flow Switches Series FS-925/926 & FS-927/930 (Welker IOM-V029)
- GE Oil & Gas Mooney Series 20/20S/20H/20HS Pilot Regulators (Welker IOM-V101)
- Horner APG, LLC XLE/XLt OCS (Welker IOM-V224)
- Inline Industries, Inc. 201F Ball Valve (Welker IOM-V222)
- INTERTEC Instrumentation Ltd. CP MULTITHERM C Electric Heater (Welker IOM-V104)
- INTERTEC Instrumentation Ltd. TS Thermostat (Welker IOM-V105)
- MTS Systems Corporation Level Plus® Liquid-Level Sensors With Tempsonics® Technology M-Series Model MR Analog Transmitter (Welker IOM-V036)
- Power-Sonic Corporation PS-1270 12 Volt 7.0 AH Rechargeable Sealed Lead Acid Battery (Welker IOM-V223)
- PR electronics 5333D 2-Wire Programmable Transmitter (Welker IOM-V270)
- PR electronics PRetop 5331B 2-Wire Programmable Transmitter (Welker IOM-V269)
- Quest-Tec Solutions Magne-Trac™ Level Indicators (Welker IOM-V367)
- Saginaw Control & Engineering EL Enclosure SCE-30EL3012LP (Welker IOM-V265)
- Solutions With Innovation L505 Visual Level Indicator Dip-Tape Visual Level Indicator (Welker IOM-V037)
- Swagelok Company Check Valves C, CA, CH, CP, and CPA Series (Welker IOM-V076)
- Swagelok Company One-Piece Instrumentation Ball Valves 40G Series and 40 Series (Welker IOM-V085)
- Swagelok Company Plug Valves P4T and P6T Series (Welker IOM-V102)
- Swagelok Company Proportional Relief Valves R Series (Welker IOM-V086)
- WIKA Instrument Corporation Bourdon Tube Pressure Gauges Type 232.53 and Type 233.53 (Welker IOM-V171)

Welker drawings and schematics suggested for use with this unit:

- System Drawing: OE153VS (Single Solenoid Valve Section, ¾" Tubing)
- System Drawing: OE180VS.1 (Dual Solenoid Valve Section, ½" Tubing)
- System Drawing: OE181VS (Dual Solenoid Valve Section, ¼" Tubing)
- System Drawing: OE181VS.3E (Dual Solenoid Valve Section With Optional Heater, ¼" Tubing)
- System Drawing: OE183VS.1E (Dual Solenoid Valve Section With Optional Heater, ½" Tubing)
- System Drawing: OE190VS (Single Solenoid Valve Section, ⅛" Tubing)
- System Drawing: OE220VS.1E (Triple Solenoid Valve Section, ¼" and ½" Tubing)
APPENDIX B: MAINTENANCE SCHEDULE

Welker recommends keeping high-wear parts on hand and replacing these parts immediately when worn or damaged.

Refer to the Installation, Operation, and Maintenance (IOM) Manual for each component for maintenance instructions.

Table B1: ECOsystem™ Maintenance Schedule

<table>
<thead>
<tr>
<th>Action</th>
<th>Weekly</th>
<th>Every 12 Months</th>
<th>As Necessary</th>
</tr>
</thead>
<tbody>
<tr>
<td>If applicable, confirm proper functioning of the heater.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open F-5 drain valve G to allow moisture to drain from the filter.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verify the pneumatic supply pressure.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Rebuild the F-5 using a Welker repair kit.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>• Replace the O-rings and filter cartridge.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>View the controller’s current alarms.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Inspect the tubing, valves, and fittings on the system for leaks.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Replace the controller battery.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Maintain the flow switch.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Maintain the regulator.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Maintain the relief valve.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Maintain the solenoid(s).</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>